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Way back in the 14th century, the mathematicians and
astronomers residing on the banks of the river N ı̄l ā in the
south Malabar region of Kerala—in the context of finding
the exact relationship between the circumference and the
diameter of a circle, as also that between an arc and the cor-
responding chord of a circle—developed several ideas and
techniques of what goes by the name of infinitesimal calcu-
lus today. In fact, they had advanced to the point of discov-
ering the series expansions of the sine, cosine and arctan-
gent functions. It has now been generally recognized that
these achievements of the Kerala School, are in fact very
much in continuation with the earlier work of Indian math-
ematicians, especially of thēAryabhat.anschool, during the
period 500–1350CE [4,5,6].

The Kerala School, pioneered by M ādhava (c. 1340–
1420) and followed by illustrious mathematicians and
astronomers like Parameśvara, D āmodara, N ı̄lakan.t.ha,
Acyuta and others, extended well into the 19th century as
exemplified in the work of́Saṅkaravarman (c. 1830). Only a
couple of astronomical works of M ādhava seem to be extant
now. Most of his celebrated mathematical discoveries—
such as the infinite series forπ, its fast convergent ap-
proximations and so on—are available only in the form of
citations in later works. M ādhava’s disciple Parameśvara
(c. 1380–1460) is reputed to have carried out detailed ob-
servations for over 50 years and composed a large number
of original works and commentaries.

N ı̄lakan.t.ha (c. 1444–1550), disciple of Parameśvara’s
son D āmodara (c. 1410–1520) and the author of
Tantrasȧngrahaand Āryabhat.ı̄ya-bh̄as.ya, is the most cel-
ebrated member of Kerala School after M ādhava. Apart
from expounding in detail on the mathematical discoveries
of M ādhava, N ı̄lakan.t.ha also came up with a remarkable re-
vision of the traditional Indian planetary model which—for
the first time in the history of astronomy—gives the correct
formulation of the equation of centre and latitudinal motion
of the interior planets [8].

A systematic exposition of the work of the Kerala School,
is to be found in the famous Malayalam workGan. ita-yukti-
bhās.ā (Rationales in Mathematical Astronomy) composed
by Jyes.t.hadeva (c. 1530)—a disciple of D āmodara and ju-
nior to N ı̄lakan.t.ha. Another detailed exposition is available
in the Sanskrit commentaries written byŚaṅkara V āriyar
(c. 1500–1550):Kriyākramakar̄ı on L ı̄l āvat ı̄ of Bh āskara
and Yukti-d̄ıpikā on Tantrasȧngraha of N ı̄lakan.t.ha. The
scope of the present article is confined to provide a brief
overview based on the exposition given inYuktibh̄as.ā
with occasional references to the other works such as
Āryabhat.ı̄ya-bh̄as.yaandKriyākramakar̄ı.

To provide a glimpse of some of the concepts and meth-
ods developed by the Kerala mathematicians, we start our
discussions with the issue of irrationality ofπ and the
summation of infinite geometric series as presented by
N ı̄lakan.t.ha in hisĀryabhat.ı̄ya-bh̄as.ya. We then consider
the derivation of binomial series expansion and the esti-
mation of the sum of integral powers of integers, as dis-
cussed inYuktibh̄as.ā. These results constitute the basis for
the derivation of the infinite series forπ4 due to M ādhava.
We shall outline this derivation as also the very interesting
work of M ādhava on the estimation of the end-correction
terms to find accurate approximations toπ. In the final sec-
tion, we shall deal with another topic which has a bearing
on calculus, but is not dealt with inYuktibh̄as.ā, namely the
evaluation of the instantaneous velocity of a planet. Here,
we shall present the formula for the instantaneous velocity
of a planet given by N ı̄lakan.t.ha which involves the deriva-
tive of the arcsine function.

Irrationality of π

Having specified the ratio of the circumference to the diam-
eter of a circle,Āryabhat.a in hisĀryabhat.ı̄ya (c. 499AD)
refers to the value1 as ‘approximate’ (̄asanna). N ı̄lakan.t.ha

1The value given is62832
20000

= 3.1416, correct to four decimal places.

1



while commenting upon the verse in his̄Aryabhat.ı̄ya-
bhās.ya raises the question: “Why then has an approximate
value been mentioned here instead of the actual value?”,
and then explains [1, p. 41]:

Given a certain unit of measurement in terms of
which the diameter (vyāsa) specified has no [frac-
tional] part (niravayava), the same measure when
employed to specify the circumference (paridhi)
will certainly have a [fractional] part (sāvayava).
. . . Even if you go a long way (i.e., keep on reduc-
ing the measure of the unit employed), the frac-
tional part [in specifying one of them] will only
become very small. A situation in which there
will be no [fractional] part is impossible, and this
is what is the import [of the expression̄asanna].

Evidently, what N ı̄lakan.t.ha is trying to explain here is the
incommensurability of the circumference and the diameter
of a circle.

Sum of an infinite geometric series

In his Āryabhat.ı̄ya-bh̄as.ya, while deriving an interesting
approximation for an arc of a circle in terms of thejyā
(Rsine) and thésara(Rversine),2 N ı̄lakan.t.ha presents a de-
tailed explanation of how to sum an infinite geometric se-
ries. The specific series that arises in this context is:
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At the outset, N ı̄lakan.t.ha poses a very important ques-
tion [1, p. 106]:

How do you know that [the sum of the series] in-
creases only upto that [limiting value] and that it
certainly increases upto that [limiting value]?

Proceeding to answer the above question, N ı̄lakan.t.ha first
obtains the sequence of results
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2Considering a circle of radius R, ifs = Rθ is the arc of a circle,
subtending an angleθ (in radians) at the centre, then

jy ā(s) = R sin θ

śara(s) = Rversθ = R(1 − cos θ).
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and so on, which leads to the general result
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N ı̄lakan.t.ha then goes on to present the crucial argument:
As we sum more terms, the difference between1

3 and sum
of powers of 14 (as given by RHS of the above equation),
becomes extremely small, but never zero. Only when we
take all the terms of the infinite series together do we obtain
the equality expressed in (1).

Binomial series expansion

Yuktibh̄as.ā [2, pp. 188-89] presents a very interesting
derivation of the binomial series for(1 + x)−1 by making
iterative substitutions in an algebric identity. The method
given in the text may be summarized as follows.

Consider the producta
(

c
b

)

, where some quantitya is
multiplied by the multiplierc, and divided by the divisor
b—all assumed to be positive. This product can be rewrit-
ten as:

a
(c

b

)

= a− a
(b− c)

b
. (3)

In the expressiona (b−c)
b

appearing above, if we want to
replace the division byb (the divisor) by division byc
(the multiplier), then we have to make a subtractive correc-
tion (calledśodhya-phala) which amounts to the following
equation.

a
(b− c)

b
= a
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c
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a
(b− c)

c
×
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b

)

. (4)

Now, in the second term (inside parenthesis) if we again re-
place the division by the divisorb by the multiplierc, we
have to make a subtractive-correction once again and pro-
ceeding thus we obtain a series in which all the odd terms
(leaving out the first terma) will be negative and the even
ones positive:3

a
c

b
= a− a

(b − c)

c
+ . . .+ (−1)m−1a

[

(b− c)

c

]m−1

3It may be noted that if we set(b−c)
c

= x, then c
b
= 1

(1+x)
. Hence,

the series (5) is none other than the well known binomial series
a

1 + x
= a− ax+ ax2 − . . .+ (−1)maxm + . . . ,

which is convergent for−1 < x < 1.
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Regarding the termination of the process, bothYuktibh̄as.ā
andKriyākramakar̄ı clearly mention that logically there is
no end to the process. However, they note that the process
may be terminated after having obtained the desired accu-
racy by neglecting the subsequentphalasas their magni-
tudes become smaller and smaller. In fact,Kriyākramakar̄ı
explicitly mentions the condition ((b ∼ c) < c) un-
der which the succeedingphalaswill become smaller and
smaller [4].

Estimation of sums of integral powers of natu-
ral numbers

The word employed in the Indian mathematical literature
for summation issaṅkalita. Yuktibh̄as.ā [2, pp. 192-96]
gives a general method of estimating the sum of powers of
natural numbers (sama-gh̄ata-sȧnkalita). The detailed pro-
cedure given in the text—which is tantamount to providing
a proof by induction—may be outlined as follows. The sum
of the firstn natural numbers may be written as

S(1)
n = n+ (n− 1) + ....+ 1

= n+ (n− 1) + (n− 2)....+ (n− (n− 1))

= n.n− [1 + 2 + ...+ (n− 1)]. (6)

Whenn is very large, the quantity to be subtracted fromn2

is practically (prāyen. a) the same asS(1)
n , thus leading to the

estimate

S(1)
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− S(1)
n or S(1)

n ≈
n2

2
. (7)

The sum of the squares of the natural numbers upton may
be written as

S(2)
n = n2 + (n− 1)2 + ....+ 12. (8)

It can be easily shown that the excess ofnS
(1)
n overS(2)

n is
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(1)
n−2 + S

(1)
n−3 + . . . (9)

Recalling (7), the above equation may be written as
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Proceeding along similar lines,Yuktibh̄as.ā argues that
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If the lower ordersaṅkalita S
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k
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Mādhava series forπ

The infinite series forπ4 enunciated by M ādhava in the form
of a verse,4 is the well known series

π

4
= 1−

1

3
+

1

5
−

1

7
. . . . (13)

We shall now present the derivation of the above result as
outlined in Yuktibh̄as.ā [2, pp. 183–98] . For this, let us
consider the quadrantOP0PnS of the square circumscrib-
ing the given circle (see Figure 1) of radiusr. Divide the
sideP0Pn into n equal parts (n very large). The resulting
segmentsP0Pi’s (i = 1, 2, . . . , n) are known as thebhujās
and the line joining its tip and the centreOPi’s are known
askarn. as. The points of intersection of thesekarn. as and
the circle are denoted byAi. ThebhujāsP0Pi, thekarn. as
ki and the east-west lineOP0 form right-angled triangles
whose hypotenuses are given by

k2i = r2 +

(

ir

n

)2

. (14)

Considering two successivekarn. as—ith and the previous
one as shown in the figure—and the pairs of similar trian-
gles,OPi−1Ci andOAi−1Bi andPi−1CiPi andP0OPi, it
can be shown that

Ai−1Bi =
( r

n

)

(

r2

ki−1ki

)

. (15)

4This verse is cited byŚaṅkara V āriyar in his commentary
Kriy ākramakar ı̄on L ı̄l āvat ı̄:

vy āse v āridhinihate r ūpahr. te vy āsas āgar ābhihate|
triśar ādivis. amasaṅkhy ābhaktamr. n. am. svam. pr. thak kram āt
kury āt||
The diameter multiplied by four and divided by unity [is found
and saved]. Again the products of the diameter and four are
divided by the odd numbers like three, five, etc., and the re-
sults are subtracted and added in order.
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Figure 1: Geometrical construction used in the proof of the
infinite series forπ.

Now the text presents the crucial argument: Whenn is
large, the RsinesAi−1Bi corresponding to different arc-bits
Ai−1Ai can be taken as the arc-bits themselves. Thus,1

8 th
of the circumference of the circle can be written as the sum
of the contributions given by (15).
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(16)
It is further argued in the text that the denominatorski−1ki
may be replaced by the square of either of thekarn. as i.e.,
by k2i−1 or k2i since the difference is negligible. Thus (16)
may be re-written in the form
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In the series expression for the circumference given above,
factoring out the powers ofr

n
, the summations involved

are that of even powers of the natural numbers. Recalling
the estimates that were obtained earlier (12) for these sums
whenn is large, we arrive at the result5
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7
+ · · ·

)

, (18)

5In modern terminology, the above derivation amounts to the evaluation

which is same as (13), the well known series forπ
4 .

The end-correction (antya-sam. skāra)

It is well known that the series forπ4 given by (13) is an ex-
cruciatingly slowly converging series.6 M ādhava has found
an ingenious way to circumvent this problem of slow con-
vergence. The technique employed by M ādhava is known
asantya-sam. sk̄ara. The nomenclature stems from the fact
that a correction (sam. sk̄ara) is applied towards the end
(anta) of the series, when it is terminated after a certain
number of terms.

Suppose we terminate the series after the term1
p
, and

consider applying the correction-term (antya-sam. sk̄ara) 1
ap

,
then (13) becomes
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= Sp + (−1)
(p+1)

2
1

ap
. (19)

whereSp denotes the partial sums in the M ādhava series.
Three successive approximations to the correction-divisor
ap given by M ādhava may be expressed as:

ap(1) = 2p+ 2

ap(2) = 2p+ 2 +
4

(2p+ 2)

ap(3) = 2p+ 2 +
4

(2p+ 2) +
16

(2p+ 2)

(20)

Yuktibh̄as.ā [2, pp. 201-07] has outlined the proof of
these approximations. Following the procedure outlined
there, we arrive at the following continued fraction for the
correction-divisor:

ap = 2p+ 2 +
22

(2p+ 2) +
42

(2p+ 2) +
62

(2p+ 2) + . . .

(21)

of the following integral
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0
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1 + x2
.

6It is so slow that even for obtaining the value ofπ correct to 2 decimal
places one has to find the sum of hundreds of terms and for getting it
correct to 4-5 decimal places we need to consider millions ofterms.
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Figure 2: Error in the value ofπ computed using the
M ādhava series with differentantya-sam. sk̄aras. Here x-
axis represents the number of terms used in findingSp.

The four curves depicted in Figure 2 represent the vari-
ation of the error in the computed value ofπ by using
four successive correction-terms—the correction-divisors
of three of which are given in (20).

Instantaneous velocity of a planet

The Indian astronomers, for a variety of reasons—such as
determining of the exact moment of beginning and ending
of a tithis,7 the time of occurrence of eclipses, the conjunc-
tion of planets, and the like—were compelled to evolve bet-
ter and better techniques for finding the instantaneous ve-
locity of a planet accurately. In this connection, they have
not only found the derivatives of sine and cosine function,
but also of the arcsine function and the ratio of two func-
tions that are continuously varying with time.

In Figure 3 we have depicted the motion of a planet using
an epicyclic model. HereP0 andP represent the mean and
the actual planet respectively.θ0 is the mean longitude of a
planet,̟ the longitude of theucca(aphelion or apogee as
the case may be) andR the radius of the concentric circle
andK is thekarn. a (hypotenuse) or the (variable) distance
of the planet from the centre of the concentricC.

If r0 andr be the mean and actual radii of the epicycle,
then themanda-correction∆µ—known asmanda-phala,
which is essentially the same as the equation of centre cor-
rection in modern astronomy—that needs to be applied to

7It refers to the time taken by the Moon to lead the Sun exactly by 12◦.

r
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C

Γ

direction of 
apogee

K

R

∆µ

ω
θ0

Figure 3:Mandacorrection.

the mean longitude of the planet can be shown to be,8

R sin(∆µ) =
(r0

R

)

R sin(θ0 −̟). (22)

Having noted thatr0
R

≪ 1 in the case of many planets,
Bh āskara II used the approximationR sin(∆µ) ≈ ∆µ,

and obtained the following correction which when added
to the mean velocity gives the true instantaneous velocity
(tātkālika-sphut.agati) of the planet:

d

dt
(∆µ) =

(r0

R

)

R cos(θ0 −̟)
d

dt
(θ0 −̟). (23)

Actually the instantaneous velocity of the planet has to be
evaluated from the more accurate relation

∆µ = R sin−1
[(r0

R

)

R sin(θ0 −̟)
]

. (24)

The correct expression for the instantaneous velocity which
involves the derivative of arc-sine function has been given
by N ı̄lakan.t.ha9 in hisTantrasȧngraha[9]:

d

dt

[

sin−1
(

r0

R
sin(θ0 −̟)

)]

=
r0 cos(θ0 −̟)

d(θ0 −̟)

dt
√

R2
− r20 sin

2(θ0 −̟)
.

(25)
It may be also be mentioned here that Acyuta Piś ārat.i

(c. 1550–1620) a disciple of Jyes.t.hadeva, has given

8Equation (22) is arrived at by imposing the constraint that the radius
of the epicycler in themandaprocess varies with thekarn. a K such that
the relation r

K
= r0

R
is always satisfied.

9In his Jyotirm ı̄m ām. s ā, N ı̄lakan. t.ha mentions that this result is due to
his teacher D āmodara.
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the correct form for the derivative of the ratio of two
functions—both varying with time—in his workSphut.a-
nirn. ayatantra[7] while calculating the instantaneous veloc-
ity of a planet in a slightly different planetary model due to
Muñj āla.

Concluding remarks

It is difficult to exaggerate the key role played by calculus
in the advancement of science, particularly during the 17th
and 18th century. Two names generally associated with the
advent of calculus are that of Newton and Leibniz, both be-
longing to the later part of the 17th century. Though they
have played a decisive role in its growth, if one were to
trace the ‘long’ evolution of ideas that gave birth to calcu-
lus from a historical perspective, it turns out that they nei-
ther initiated the ideas, nor its development got terminated
with them.

It was amply demonstrated above that Saṅgamagr āma
M ādhava—a brilliant astronomer and mathematician of the
14th century, belonging to Kerala—not only discovered
the “Gregory-Leibniz” series, but also devised very effi-
cient methods (antya-sam. sk̄ara) to obtain fast convergent
approximations of the same. In fact, employing a certain
correction-term given by M ādhava it is possible to obtain
π value correct to 13 decimal places, just by evaluating 50
terms of the “Gregory” series which converges excruciat-
ingly slowly (see fn.6).

The sophisticated analysis, behind the technique devised
by M ādhava in accelerating the convergence of a slowly
converging series was not discussed in the paper as it does
not fall under the scope of it. Neither did we present the
brilliant derivation of the Rsine and Rcosine series due to
M ādhava. Nevertheless, it would suffice to mention that
mathematicians of Kerala around 14th century had clearly
mastered the technique of handling the infinitesmal and the
infinite—the two pillars on which the edifice of infinites-
mal calculus rests upon—with great felicity. Introducing
these mathematical ideas and techniques as a part of the
main stream educational system, would besides being exit-
ing and making the education more complete, may also be
of great pedagogical value.
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